首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   59篇
  国内免费   56篇
林业   76篇
农学   96篇
基础科学   3篇
  103篇
综合类   481篇
农作物   72篇
水产渔业   43篇
畜牧兽医   115篇
园艺   64篇
植物保护   93篇
  2023年   3篇
  2022年   9篇
  2021年   20篇
  2020年   11篇
  2019年   14篇
  2018年   16篇
  2017年   24篇
  2016年   41篇
  2015年   29篇
  2014年   28篇
  2013年   56篇
  2012年   59篇
  2011年   84篇
  2010年   61篇
  2009年   65篇
  2008年   51篇
  2007年   45篇
  2006年   56篇
  2005年   44篇
  2004年   31篇
  2003年   31篇
  2002年   30篇
  2001年   32篇
  2000年   32篇
  1999年   25篇
  1998年   35篇
  1997年   28篇
  1996年   23篇
  1995年   12篇
  1994年   15篇
  1993年   22篇
  1992年   16篇
  1991年   16篇
  1990年   16篇
  1989年   15篇
  1988年   10篇
  1987年   9篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1973年   1篇
  1955年   1篇
排序方式: 共有1146条查询结果,搜索用时 343 毫秒
1.
以2年生晚松盆栽苗为供试材料,从抗大气环境中SO2污染方面对晚松的抗逆能力进行了定量评价,为晚松的园林应用提供理论依据。研究表明,晚松叶绿素a、b对模拟SO2污染反应敏感,叶绿素b所受伤害大于叶绿素a,类胡萝卜素较不敏感。过氧化物酶活性的提高有助于减轻膜脂过氧化造成的伤害,从而使其在SO2污染胁迫较轻(10 mmol/L)时免受伤害。  相似文献   
2.
高昆  王佳琪 《北方园艺》2020,(7):132-137
以锦灯笼种子为试材,用3%、5%、8%和10%4个浓度的PEG-6000溶液模拟不同的干旱胁迫条件,研究锦灯笼种子萌发情况和幼苗生理特性,以期了解其抗旱性。结果表明:1)随着PEG-6000浓度的加大,锦灯笼种子的发芽率和发芽势先增加后减少,浓度为5%时最大,株高也是在胁迫浓度为5%时达到最高,这说明一定程度的干旱胁迫可以促进种子萌发及幼苗生长。2)丙二醛含量、可溶性糖含量和电导率随着PEG-6000浓度的增加表现为持续上升的趋势,过氧化物酶(POD)活性则呈现先上升后降低的趋势。  相似文献   
3.
为揭示抗坏血酸-谷胱甘肽(As A-GSH)循环在杉木适应低磷和铝毒胁迫中的作用,以耐低磷和铝毒胁迫的杉木家系YX3及对低磷和铝毒胁迫敏感的杉木家系YX12为试验材料,研究不同处理下[对照处理(CK)、低磷处理(-P)、铝处理(Al)和低磷加铝处理(-P+Al)]2个杉木家系叶片中As A-GSH循环代谢关键酶的变化规律。结果表明:不同胁迫处理下(-P、Al和-P+Al),2个杉木家系的丙二醛(MDA)含量均显著高于各自对照(-P处理下YX12叶片MDA含量除外),而且在Al和-P+Al处理下,耐性杉木家系YX3叶片中MDA含量均小于敏感型杉木家系YX12。进一步分析表明,与各自对照相比,不同胁迫处理增加了2个杉木家系叶片中的As A和DHA含量,同时提高了其叶片中抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,而且除DHA含量外,在-P、Al和-P+Al处理下耐性杉木家系YX3叶片中APX、GR、MDHAR、DHAR和As A含量均高于敏感型杉木家系YX12。此外,耐性杉木家系YX3叶片中还原型谷胱甘肽(GSH)含量以及As A/DHA值和GSH/GSSG值均高于敏感型家系YX12。因此,上述结果表明在不同胁迫条件下,杉木幼苗通过提高叶片抗氧化物质含量和As A-GSH循环关键酶活性来清除过量的活性氧,减轻胁迫诱导的氧化损伤;不同胁迫处理下,2个杉木家系叶片抗氧化物质含量及As A-GSH循环中关键酶活性响应的差异表明耐性杉木家系YX3具有较高的As A—GSH循环效率和抗氧化物质再生能力,从而有效抑制胁迫诱导的氧化损伤,这可能是其具有较强耐性的重要原因之一。  相似文献   
4.
Lignin-degrading enzymes secreted by white rot fungi play an important role in the degradation of lignin and persistent organic pollutants(POPs).In this study,effect of environmental C/N ratio on the activities of lignin-degrading enzymes,lignin peroxide(Li P)and manganese peroxidase(Mn P),produced by Phanerochaete chrysosporium,a white rot fungus,was investigated.Glucose was used as C source,and ammonium tartrate of different concentrations was used as N source to provide different C/N ratios.Relationships between Li P and Mn P activities and environmental C/N ratio were explored.The results showed that the higher the N source concentration,the faster the mycelium pellets aged.The faster the mycelium dry weight increased,the higher the Li P and Mn P activities.A high C/N ratio was a necessary condition for the secretion of Li P or Mn P.In addition,mycelium dry weight essentially affected enzyme activities.In the 122 C/N ratio and 50 C/N ratio treatments,mycelium dry weight essentially affected Mn P activity and both Li P and Mn P activities,respectively.  相似文献   
5.
6.
N‐3 polyunsaturated fatty acids (PUFA) are essential for foetal development. Hence, including n‐3 PUFA in the sow diet can be beneficial for reproduction. Both the amount and form (precursor fatty acids vs. long chain PUFA) of supplementation are important in this respect. Furthermore, including n‐3 PUFA in the diet can have negative effects, such as decreased arachidonic acid (ARA) concentration and increased oxidative stress. This study aimed to compare the efficacy to increase eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations in the piglet, when different concentrations of linseed oil (LO, source of precursor α‐linolenic acid) or fish oil (FO, source of EPA and DHA) were included in the maternal diet. Sows were fed a palm oil diet or a diet including 0.5% or 2% LO or FO from day 45 of gestation until weaning. Linoleic acid (LA) was kept constant in the diets to prevent a decrease in ARA, and all diets were supplemented with α‐tocopherol acetate (150 mg/kg) and organic selenium (0.4 mg/kg) to prevent oxidative stress. Feeding 0.5% LO or 0.5% FO to the sows resulted in comparable EPA concentrations in the 5‐day old piglet liver, but both diets resulted in lower EPA concentrations than when 2% LO was fed. The highest EPA concentration was obtained when 2% FO was fed. The DHA level in the piglet liver could only be increased when FO, but not LO, was fed to the sows. The 2% FO diet had no advantage over the 0.5% FO diet to increase DHA in the piglet. Despite the constant LA concentration in the sow diet, a decrease in ARA could not be avoided when LO or FO were included in the diet. Feeding 2% FO to the sows increased the malondialdehyde concentration (marker for lipid peroxidation) in sow plasma, but not in piglets.  相似文献   
7.
8.
为明确常用杀虫剂对小麦抗氧化性的影响,研究了小麦幼苗期用不同浓度氧乐果和吡虫啉的营养液处理后144 h内对其过氧化物酶(POD)、谷胱甘肽还原酶(GR)及过氧化氢酶(CAT)活性的影响。结果表明:用400、800和1 600 mg/L的氧乐果处理小麦幼苗后24 h,POD活性均显著降低;1 600 mg/L的氧乐果处理后6 h,其CAT活性比对照降低了32.9%;各浓度氧乐果处理后144 h,GR活性均显著降低。而用25、50和100 mg/L的吡虫啉处理小麦幼苗后144 h内,只有50 mg/L处理组在12 h时的POD活性比对照升高了65.0%。杀虫剂对小麦幼苗中3种抗氧化酶活性的影响不仅与药剂种类有关,还具有一定的剂量效应与时间效应。  相似文献   
9.
低氧胁迫对河川沙塘鳢抗氧化酶及ATP酶活性的影响   总被引:1,自引:0,他引:1  
研究了在急性低氧1.5 h、5 h和慢性低氧3 d下,河川沙塘鳢(Odontobutis potamophila)5种组织(心、脑、肝、鳃和肾)的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GPX)3种抗氧化酶和ATP酶活性的变化规律。结果显示:在急性低氧暴露1.5 h时,河川沙塘鳢SOD和GPX的活力在各组织中与对照组相比均无显著差异,CAT活力在心、鳃和肝3种组织呈现显著升高(P0.05),ATP酶活力在心和肝组织极显著升高(P0.01);在急性低氧暴露5 h时,除肝组织SOD酶活性显著降低外(P0.05),其它4种组织的CAT、GPX和ATP酶均不同程度显著升高(P0.05);在慢性低氧处理3 d时,心、脑组织的抗氧化酶已基本恢复至与对照组无显著差异的水平,但鳃、肝和肾中酶活力仍较高(P0.05)。研究表明,河川沙塘鳢能通过自身调节抗氧化酶及ATP酶活性,改变代谢底物,提高机体适应低氧环境的能力。  相似文献   
10.
以芒果中多酚氧化酶(PPO)和过氧化物酶(POD)为研究对象,探讨加热与超声波作用对多酚氧化酶和过氧化物酶钝化效果的影响。结果表明:单独的加热(≤50℃)或0℃低温超声波(403.19、601.25、799.31 W/cm2)处理酶液,随着时间的延长,酶活性逐渐下降,但酶残留活性均在75%以上;而超声波与热处理结合能使POD和PPO显著失活,在45℃,799.31 W/cm2条件下处理15 min后,PPO、POD残余酶活力分别降至38.66%、14.43%。试验结果表明:超声波和热处理结合对芒果PPO和POD的钝化有协同效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号